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Abstract

The use of large-scale, real-time, multi-player

simulations is growing rapidly, and is becoming an

important network application.  This paper provides

some historical background on how such

simulations emerged within the U.S. Department of

Defense, outlines the architectural principles on

which they are based, and identifies some of the

network services and performance characteristics

required to support very large scale applications.   

SIMNET is a real-time, soldier-in-the-loop

battlefield simulation developed by ARPA, in

partnership with the U.S. Army, between 1983 and

1990.  This program demonstrated that it is possible

to link hundreds or thousands of simulators together

to create a consistent, virtual world, in which all

participants experience a common, logical sequence

of events.   In this world, the causal connections

among these events, from the individual crew station

to the battalion command post, are clear and easily

inspectable.  The SIMNET architecture and

protocols have evolved into the Distributed

Interactive Simulation (DIS) Standard Protocols

(IEEE 1278-1993). 

Under policies recommended by the Defense

Science Board and now being adopted by the U.S.

Department of Defense, these simulation techniques

are being introduced into every stage of DoD system

development, doctrinal development, training, and

rehearsal for field operations.  Military agencies in

other countries, including Germany and the United

Kingdom, are exploring the use of this technology.

Non-military agencies, such as the U.S. Federal

Aviation Administration, are also beginning to adopt

DIS protocols.

I.  A Brief History of SIMNET

The Distributed Simulator Networking

(SIMNET) program was initiated by DARPA in

1983, with substantial support from the U.S. Army.

The emphasis of the program from the outset was on

tactical team performance:  it was assumed that crew

members were already proficient in their individual

specialties. 

After the basic design philosophy and system

architecture were developed , the first conceptual

demonstration was conducted in December,1984.

The first demonstration involving real-time,

out-the-window graphics was conducted in

November, 1985.  The first platoon-level system,

incorporating custom image generation capabilities

designed to optimize performance in an environment

with large numbers of moving objects, was installed

at Ft. Knox, Kentucky, in April, 1986.   The first

helicopter simulators were installed at Ft. Rucker,

Alabama, in late 1987.

At the conclusion of the program, a suite of

approximately 250 simulators, installed at nine

operational training sites and two developmental

sites, were transitioned to the U.S. Army.   Two

mobile platoon sets, installed in containers mounted

on flatbed trailers, were delivered to the Army

National Guard.

The communications protocols by which the

simulators transmit essential information to one

another are now incorporated in the Distributed

Interactive Simulation (DIS) Standard Protocols

(IEEE 1278-1993) [1].  The next generation of this

standard is currently under development.  The next

DIS semi-annual workshop will be held in

September, 1994, in Orlando, Florida.

II.  Key Design Principles

The success of the SIMNET approach [2], and

the fact that all of its essential elements have been

adopted into the DIS draft standard after intense

scrutiny by a highly competitive industry, results

from a few key design principles and architectural

decisions that were made early in the program and

were progressively refined.  These principles are

summarized in the following paragraphs.

II.A.  Object/event architecture

The first key decision was to model the world as

a collection of objects, which interact with each

other through a series of events.  The basic terrain

and cultural objects (buildings, bridges, etc.) are

assumed to be known to every other object.  This

paradigm permits the possibility of an event that

changes one or more of these objects, e.g., blowing

up a bridge, or digging a pit at a certain location,

though these capabilities were not implemented

under the SIMNET program.
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II.B.  Autonomous simulation nodes

All events are broadcast on the simulation

network, and are available to all objects that may be

interested in them.  The simulation nodes that

initiate an event do not need to keep track of what

other nodes may be affected by that event; these

calculations are the responsibility of the receiving

nodes.

In SIMNET (and DIS), there is no central control

process that schedules events or resolves conflicts

among contradictory versions.  Instead, each

simulation node is completely autonomous; the

communications algorithms even permit a

simulation node to join or leave an exercise in

progress without disrupting the interactions among

the other nodes.

Each node is responsible for maintaining the

state of at least one object in the simulated world,

and for communicating to other nodes any events

caused by its object(s).  Each node is also

responsible for receiving event reports from other

nodes, and calculating the effects of this event on the

object(s) they are simulating.  If the effects cause

other events to occur, then the node is responsible

for notifying others of these events.

II.C.  Transmission of
"ground truth" information

Each node transmits absolute truth about the

current state of the object(s) it represents and any

events they have caused.  It is the responsibility of

the objects receiving an event message to determine

whether they are able to perceive the event and

whether (and how) they are affected by it.  When

information needs to be degraded before

presentation to a human crew or an automated crew

(e.g., on a radar display), it is the responsibility of

the receiving objects to calculate and introduce this

degradation. 

II.D. Transmission of 
state change information 

To minimize communications processing, nodes

transmit state update information only when the

object(s) they represent change  their behavior.  A

change of behavior constitutes an event that may be

of significance to other objects.  This approach

minimizes repetitive transmission of redundant

information, which substantially reduces the

processing load on other nodes.

II.E. "Dead reckoning" algorithms

Between state update messages, receiving  nodes

extrapolate the last reported states of remote objects

that are of interest to their local object(s), and use

this information in generating displays for human

crews or detection probabilities for automated crews.

The sending vehicles are responsible for generating

a new state update message before discrepancies in

the remote extrapolations become unacceptably

large.

In effect, this algorithm depends on a "contract"

among the nodes.  Each node guarantees that it will

transmit a state update event within one-fifteenth of

a second of the time that the true position and

orientation of any object(s) it represents diverges

from the calculated values (based on an

extrapolation of the last reported state update

information) by more than an agreed-upon threshold.

Obviously, this algorithm requires that each node

maintain a dead reckoning model that corresponds

exactly to the model(s) being used by the remote

nodes.

Since each state update includes  corrected

position, as well as velocity and heading

information, the dead reckoning algorithm is

essentially self-healing.  A node that fails to receive

a state update message will, at worst, continue to

extrapolate the previous state of a remote object for

a few additional seconds.  If the remote object

continues to change its behavior, it will generate a

burst of updates, and a new message is highly likely

to arrive within a fraction of a second.  This new

message will correct any error that has accumulated

and will initialize a new extrapolation.

In SIMNET, simple position, orientation, and

velocity information was used for all vehicles.

Manned vehicle simulators recalculated state

information 15 times per second.  Actual update

transmission frequencies averaged 1 per second for

ground vehicles and 3 per second for air vehicles,

although individual vehicles often transmitted 15

updates per second during periods of intense

activity.  Tradeoff studies showed that the use of

second derivative state variables reduced

transmissions for air vehicles to about 1 per second

as well [3].

III.  Types of Simulations 

Three principal types of simulations are

incorporated  in the SIMNET/DIS architecture.  In

addition, other nodes are used to support after-action

review and data analysis.

III.A.  Manned vehicles

Manned vehicle simulations are intended to

provide realistic control/display interactions for each

crew member.  For example, an M1 tank simulator

provides controls and out-the-window displays for

the tank commander, gunner, loader, and driver.  An
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AH-64 helicopter simulator provides controls and

displays for the pilot and the co-pilot/gunner.  Each

manned vehicle crew must navigate, avoid obstacles,

maintain formation, detect and identify targets,

employ weapons, and communicate via radio and

other devices, just as they would on the battlefield.

III.B.  Command post simulations

Command post simulations focus on

decision-making and resource allocation, rather than

on moving and shooting.   They do not require

out-the-window displays or detailed control/display

interactions.  Typically, command post simulations

involve radio/telephone communication, a map

display, and a workstation that supports the types of

decisions and inputs that are normally made by each

functional position.  A Fire Support Officer, for

example, uses a display that shows the location and

strength of his artillery batteries, his remaining

ammunition supply, and currently scheduled fire

missions.  These missions can be interrupted or

modified, and new missions can be added, as

circumstances require.  A logistics support officer

has a limited number of fuel and ammunition

carriers, which he can dispatch to selected locations

to rendezvous with and resupply units that are

running low on expendables.

III.C.  Semi-automated forces (SAF)

Semi-automated simulations are designed to

realistically mimic the externally visible behavior of

opposing or supporting forces without requiring

large numbers of manned simulators and personnel

to operate them.  A human commander exercises

supervisory control over units that may include

dozens of vehicles.  These multi-vehicle simulations

broadcast the same state update messages as manned

simulators, so that their behavior is indistinguishable

to the other simulators and (usually) to their crews.

The semi-automated simulations of vehicles and

small units are intelligent enough to provide basic

route planning, obstacle avoidance, formation

keeping, line-of-sight detection of nearby vehicles,

target engagement, and so forth.  

The human commander provides the goals and

objectives for his subordinate units via input forms

modeled after standard field orders and graphic

overlays.  He continually monitors the forces under

his control, and can intervene to redirect their

activities at any point.  He may temporarily assume

direct command of a lower-level subordinate unit

(e.g., a tank platoon) in order to exercise finer

control over their actions.

The SAF commander's workstation consists of

(1) a task organization display, showing how the

units currently under his command are

organizationally related to each other, (2) an

operations display for composing orders and

requests for information, (3) a message log display,

which displays recent radio reports from the units

under his command, and (4) a military map display

on which the latest position reports, enemy contact

reports, etc., are automatically posted.

The SAF commander also maintains radio

contact with command post staff and commanders of

fully manned units.

III.D.  Other simulation nodes

Other key elements in the simulation network are

designed to observe exercises in progress and/or to

collect data for later analysis and replay.  The most

important of these elements are the data collection

and analysis system and the Observation Vehicle (or

"Flying Carpet").

The data collection and analysis system captures,

time stamps, and records every event message

transmitted by every node.  Using the timestamp

information, any portion of any exercise can be

replayed onto the network at a later time, and any

simulator can be used to drive or fly freely

throughout the battlefield, seeing every event that

one would have seen at the time the exercise was

conducted.  In effect, this permits a "time travel"

capability – the ability to view perfectly

reconstructed events, which are not affected by the

presence of the time-travelling simulator.  The data,

once recorded, can also be analyzed by a suite of

statistical analysis tools to prepare reports regarding

what took place.

The "Flying Carpet" is a simulator that provides

both a situation (map) display and an

out-the-window view of the battlefield.  It is

invisible to other simulators, and so can be used to

observe an exercise in progress without affecting it,

as well as for "time travel."  The Flying Carpet can

be attached to, and "towed" by any selected vehicle,

so that the behavior of that vehicle can be monitored

in detail.

IV.   An example of DIS interaction

To appreciate the kinds of cooperative

interactions involved in DIS simulations, consider a

simulator that includes the following software

processes: (Refer to Figure 1)

(a) A network interface, that sends and receives

DIS PDUs on a Local Area Network (LAN).

(b) An “other vehicle state table” that records

entity state information from other simulation nodes

and carries out dead reckoning extrapolations based

on their last reported states.

241-3



Real-Time Distributed Simulation Proc. INET ‘94/JENC5 D.C. Miller
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Principal Software Interfaces

Figure 1 Software Modules in a Typical Simulator

(c) A Computer Image Generator (CIG) front

end, which combines the non-changing information

from the local copy of the terrain data base and the

dynamic information from the other-vehicle state

table, calculates the potentially visible terrain and

dynamic object polygons, and transfers them to

special-purpose CIG back end hardware.  This

specialized hardware filters, clips, rotates, and scales

visible polygons, applies calculated texture patterns,

and sends them to the proper vision block displays

for viewing by the crew members.

(d) An own-vehicle dynamics model that

computes (in whatever detail is necessary) the state

of the entity being simulated.

(e) A control/display interface process that reads

control positions and drives meters, gauges, and

similar displays.

(f) A sound generation process that drives a set of

speakers within the simulator.

Now imagine two such simulators, and let’s step

through the sequence of events that occurs when

simulator A fires at, and hits, simulator B .

(Refer to Figures 2 and 3).

(1)  First, the control/display interface detects

that the gunner has pulled the trigger.

(2) The sound generation software is notified that

a local main-gun sound effect is required.

(3)  The image generator front end is notified

that a local muzzle flash effect is required, which

will obscure the gunner’s and commander’s vision

blocks for a second or so.

(4)  The network interface process is notified that

an event has just occurred that has changed the

vehicle’s appearance, and a new Entity State PDU is

transmitted onto the network.  This PDU is received

by all other simulation nodes, and the updated state

information is transferred into the other-vehicle state

tables.  

(5)  During the next CIG frame recomputation,

the updated state information for simulator A is

incorporated, and (unless some intervening object

blocks his view) any crew member looking in the

direction of simulator A will see a tank with a large

fireball at the end of its gun tube.

Note that at this point no calculation has yet

begun as to where the round that was fired is going.

We will assume for the purposes of this explanation

that the round follows a predictable ballistic

trajectory.  For a guided munition, the story is more

complicated and beyond the scope of this paper.

Well in advance of the simulation, flyout

trajectories have been computed for each type of

ammunition that can be fired by a given simulator.  
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 2 Local sound effect generated
 3 Local muzzle flash effect generated
 4 Entity State PDU transmitted; received by other nodes
 5 Image of muzzle blast displayed at other simulators
 6 Ballistic flyout calculated frame by frame; tracer displayed

4

Figure 2 Typical sequence of events when Simulator A fires at Simulator B
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 6 Ballistic flyout calculations; tracer displayed locally
 7 Detonation effect displayed locally
 8 Detonation PDU broadcast to other simulation nodes
 9 Detonation effect displayed at other simulators
 10 Damage effects calculated by struck vehicle
 11 Visible damage effects (if any) broadcast in Entity State PDU

Figure 3 Typical sequence of events (continued)

Each flyout trajectory is then divided into short

chord segments that correspond to the distance

traveled by the projectile within one frame interval.

(6)  When the round is fired, the gun tube vector

is used to initiate a flyout calculation.  As the CIG

computes each new out-the-window view, it

retrieves the next sequential chord segment from the

flyout vector.  It computes whether this chord

segment intersected any polygon in its static or

dynamic object list.  If not, it displays a tracer image

for the crew of the firing simulator.  If so, it returns

the x,y,z coordinates at which the intersection

occurred and the object with which the polygon is

associated.  Note that this approach ensures that a

vehicle that inadvertently drives or flies into the

path of a projectile will be hit.

(7)  Once an impact has been determined, the

CIG displays an appropriate impact effect to the

crew of the firing simulator.  The effect displayed

for a kinetic energy round striking the ground is

quite different from the effect of a high-explosive

round striking armor.

(8)  The network interface software transmits a

Detonation PDU, which is received by all other
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simulation nodes.  This information is inserted into

the other-vehicle state table for incorporation in the

next out-the-window image.  

(9)  The detonation is displayed. Crews of any

vehicles in the vicinity that have an unobstructed

line-of-sight to the detonation point will see the

round impact effect.  For a simulator that does not

represent an entity struck by the round, this is all

that is required.

(10)  If, however, the simulator finds that the

impacted polygon is part of an entity it represents, it

is responsible for determining what damage, if any,

it suffered as a result of the impact.  Just as the

simulator representing the firing entity is responsible

for determining the point of impact, the simulator

representing the struck entity is responsible for

determining the effect of the impact.  The simulator

typically uses probabilistic damage tables based on

ammunition type, where it was struck, the angle of

incidence, and the firing range.  Damage results can

range from none at all to a catastrophic kill.

(11)  In the case of a catastrophic kill

accompanied by fire, the simulator representing the

struck entity will begin broadcasting Entity State

PDUs that reflect a burning vehicle at its current

location.

V.  SIMNET simulation of
radio/telephone communications

One other instructive example is the SINCGARS

radio simulation developed for the Army Research

Institute Combat Vehicle Command and Control

Project under the SIMNET program.  This

simulation involved the propagation of digital map

data, as well as voice signals, over a standard radio

channel.

First the voice and data signals were digitized at

the simulated transmitter.  Header information was

added to the data packets to represent the transmitter

location, frequency, power, and antenna orientation.

Using principles similar to those for the effects of

projectiles, the receiver simulators were responsible

for determining which signals were received by the

crew.  Each receiving simulator used its copy of the

terrain data to compute the received signal strength,

based on the known location of the transmitter and

receiver and diffraction effects caused by

intervening objects.  A receiver characteristics

model was used to determine which signals were

captured; only the “winning” signal was decoded

and mixed with noise at the calculated signal-to-

noise ratio.  This signal could be a jammer, as a

result of either intentional or unintentional jamming.

The same signal source information could be

used for navigational purposes (by friendly forces)

or by radiation-seeking missiles (to disrupt enemy

communications).

VI.  Critical network requirements for
DIS interactions

To support the interactions described above, the

network must provide a certain level of assured

services.  In particular, it must exhibit

Low transport latency.  DIS Guidance

Documents specify less than 300 msec total end-to-

end latency (from the trigger pull to the remote

display of the muzzle flash in the example above)

for “loosely coupled” interactions, and 100 msec

total latency for “tightly coupled” interactions (e.g.,

formation flying).

Low latency variance.  Low latency variance is

important to minimize jitter, although within certain

limits, required time stamps on Entity State PDUs

can be used to correct for latency variance by

inserting corrective changes in dead-reckoning

extrapolations.

Reasonably reliable delivery.  The dead

reckoning algorithm was designed to be robust with

respect to missing datagrams, within certain limits.

If an Entity State PDU is missed, the receiving

simulator will continue to dead reckon the entity

along its prior trajectory until a new PDU is

received.  If the entity is maneuvering significantly,

the next update will arrive within a fraction of a

second, the entity’s position will be corrected, and

the new derivatives will be used to initiate a new

extrapolation.  A one or two percent datagram loss

will present no problem, as long as the missing

datagrams are randomly distributed and do not occur

in correlated sequences.

For many military simulations, NSA-approved

encryption processes are required.  This currently

represents a major bottleneck, with the encryption

devices introducing both significant throughput

limitations and latencies.

VII.  Techniques to support very large
exercises

The largest SIMNET exercise was conducted in

March 1990 at five sites.  At the peak of the

exercise, approximately 850 entities were active,

most of which were Semi-Automated Forces.  Since

SIMNET PDUs contain approximately 1000 bits

and active entities average one PDU per second, the

traffic volume at the peak was approximately 850

kilobits per second.  DIS PDUs are larger than

SIMNET PDUs (typically 1700 bits), so the same
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exercise in DIS would generate roughly 1.5

megabits per second.

If such an exercise were scaled up to involve

100,000 entities, as is currently being proposed as a

goal, each simulation node would have to process

over 175 megabits per second, extracting from this

torrent the relatively small percentage of events that

are of potential interest to the entities being

simulated at that node.  Such a flow would be

beyond the capacity of most low-cost simulators,

and in any case would represent a very inefficient

use of computing and communication capacity.

Fortunately, some promising techniques are

available to improve this situation.

VII.A.  Entity state PDU compression

The first technique takes advantage of the fact

that DIS PDUs contain a substantial amount of

redundant and/or invariant information.  Each entity

repeats a description of its characteristics in every

Entity State PDU, even though these characteristics

never change once the entity has been initialized.

Each entity continues to broadcast entity state

information periodically even if it is motionless, and

even if it has been destroyed.  Each entity broadcasts

its entire state, even if only one state variable

changes (e.g., a rotating turret on a stationary tank).

In each case, a substantial percentage of the PDU

content does not change.  Analyses indicate that

95% of the time, less than 10% of the bytes change

in two successive PDUs from the same entity.  This

redundancy provides an opportunity for substantial

savings from fairly straightforward byte-difference

encoding techniques.  A recent paper by the author

and his colleagues [4] describes a protocol-

independent compression algorithm (PICA), which

has produced a 4:1 compression ratio in initial tests.

Among the advantages of this algorithm are the fact

that almost all byte difference PDUs are small

enough to fit within a single ATM cell.

VII.B.  Site-to-site filtering of PDUs

The next logical technique to explore is a

screening algorithm that avoids sending PDUs to

sites at which all entities are beyond possible

interaction range.  Simple geographic range filtering

is probably not sufficient, however, since some

entities may have long-range sensors that can detect

other entities at a considerable distance.  Radio

signals need to be sent to sites at which one or more

entities is tuned to the appropriate channels.  Local

agents of some kind can be used at each site to

maintain lists of entities that are of interest to other

sites, and vice versa.

This technique will probably require the use of

multicast groups that can be formed and

dynamically modified to minimize the transmission

of  irrelevant data.  Studies of how best to do this are

just beginning.  

VII.C.  Combined techniques

These two techniques can be combined, of

course.  Filtered sets of PDUs can be compressed

and bundled for optimum transmission efficiency to

each remote site.  Compression and bundling also

minimizes loads on encryption devices which, as

previously noted, are currently a principal

bottleneck.  

VIII.  Some caveats regarding 
network traffic prediction

It cannot be overemphasized that traffic flow

volume is highly  dependent on the specific exercise

scenario being played out – which determines which

entities are interacting in the virtual world with

entities being simulated at other physical sites on the

network.  A “worst case” analysis, in which some

entities from every physical site are closely

interacting with entities from every other site,

always requires sending all information everywhere.

To ensure that large exercises (relative to the

available bandwidth and processing resources) will

not overload these resources, proposed exercises

should always be played out in a “simulation of the

simulation” to check for an appropriate mapping of

real-world simulations to virtual-world interactions

and a reasonable balancing of network loads.

These considerations will only become greater as

new efforts, to be funded soon, add additional

classes of network traffic, such as command and

control communication between higher-echelon

commanders and their staffs, dynamic terrain effects

(such as bridges and runways that accumulate

damage), weather effects (rain, fog, smoke, etc.),

and more elaborate exercise monitoring and

management protocols.

IX.  Conclusion

As applications of distributed simulation grow, it

is increasingly important that efficient and

economical network services be available to support

them.  Many of the characteristics of distributed

simulation are unlike thoseof other “information

superhighway” applications.  In particular, the

requirement for low-latency, real-time, continous-

time interactions, combined with large numbers of

dynamically changing multicast groups in which

each simulation node is both a producer and

consumer of information, is unique among

foreseeable uses of high-bandwidth communication.
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As the magnitude of such applications increases,

and the virtual-world phenomenology grows richer,

the need for intelligent data traffic management

algorithms will be critical.  Testbeds now under

development will be important in evaluating

candidate algorithms.  Ideas and contributions are

welcome.
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